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Abstract
Loss of production speed is an unavoidable reality for process manufacturers. Reduced production speeds are shown to consume 9–
15% of available production capacity in various production contexts and create substantial costs for capital-intensive process
industries. Amongst the least examined of the six big efficiency losses measured within total productive maintenance, speed loss
presents significant opportunities for potential efficiency improvements in manufacturing companies. Based on the literature, this
paper presents a framework of the factors related to speed loss, including three overall dimensions: technology factors, human
factors and product factors. Next, a case study of two production lines to investigate this framework and quantify the scale of speed
loss for the factors identified in the case study. For quantification, generalised least squares regression is performed to study the
relationship between each factor and speed loss. The analysis of the production data reveals that technology and human factors have
the strongest correlations with speed losses in this industry and account for the most speed loss. This research can directly support
operational improvement initiatives in practice by identifying the factors with the strongest relationships to speed loss, aiding
practitioners to select the most relevant means to improve speed and identify appropriate overall equipment effectiveness targets.
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1 Introduction

Speed loss is an expensive, technical reality for large-scale,
complex production processes. Formally identified as a source
of lost capacity by Nakajima [1] in the total productive

maintenance (TPM) methodology, speed loss is any deviation
from the designed production speed or throughput in a
manufacturing context caused by rough running, equipment
wear, tool wear and operator inefficiency, amongst other fac-
tors [2]. Running at reduced speed can silently reduce the
capacity of production lines, impacting service levels in
capacity-constrained situations and eroding efficiencies in sit-
uations of surplus capacity. Reduced production speeds are
shown to consume 9–15% of available capacity in cases in
the literature [3, 4]. Furthermore, reduced capacity from re-
duced production speeds is expected to be higher in the large,
automated production and packaging systems characteristic of
process manufacturing [3, 5]. For large-scale process
manufacturing lines with millions of euros of annual revenue,
increasing speed efficiency in production by only 1% can give
firms competitive cost advantages over other players in the
market [6].

Capacity losses due to reduced speed, though, are often
overlooked by management and are not prioritised due to (1)
a mindset which sees some speed loss as allowable and (2) to
the difficulty of eliminating speed loss [7, 8]. When
optimising maintenance tasks, factory management and main-
tenance departments tend to focus on the more pressing de-
mands of large production stop times than the smaller,
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persistent losses from variations in run rate [3, 8]. Speed loss is
also difficult to notice in production as familiarity with the
process can hinder operators’ ability to detect deviations in
speed [8], and unambitious speed targets keep factories from
achieving their maximum potential speed [3].

Many companies have not been able to calculate the pre-
cise magnitude of speed loss due to poor data registration [3,
4, 9]. Difficulties in data collection partly stem from the chron-
ic nature of speed loss as a production disturbance. Unlike
sporadic disturbances easily recognisable as large deviations
from the normal state, chronic disturbances are usually small,
numerous, hidden and complicated; have many concurrent
causes; and are often regarded as normal [10].

Considering the chronic nature of speed loss and the
difficulties addressing its causes, the operations manage-
ment and TPM literature lacks solutions specifically ad-
dressing speed loss [8]. Furthermore, the TPM literature
includes limited quantification of speed loss and even less
work guiding the identification of factors and quantifying
factors’ relative effects, particularly for process industry
manufacturers (e.g. producers of food, oil, gas, chemical,
metals and commodity materials). Lastly, there is no dis-
cussion on the possibility of minimum expected speed
losses for different operations based on the process tech-
nology, process variability and other factors unique to
individual production settings. This information could
aid operations managers in driving improvement initia-
tives, helping them discern potential speed improvements
that could be realised through standardisation, capital ex-
penditures and technological advancements.

This article contributes to the TPM and operations manage-
ment literature with a framework of speed loss factors and a
study examining actual speed loss for two production lines, a
measure often unquantified in overall equipment effectiveness
(OEE) studies due to the difficulty of data collection.
Additionally, the study examines the mechanical underpin-
nings of speed loss on process manufacturing equipment, the
factors that may impact this speed loss and the relative effects
of each identified factor. To the best of the researchers’ knowl-
edge, this study presents the first comprehensive examination
of possible factors leading to speed loss and the first applica-
tion of regression analysis to quantify speed loss related to
each factor in a case of two production lines.

The research question used to guide this investigation of
speed loss is: How do different factors affect speed loss on
production lines?

The study is structured as follows. First, a review of the
literature discussing OEE, speed loss and factors related
to speed loss is presented. On this basis, a framework of
speed loss factors is constructed. Next, a case study of
two production lines is presented and analysed through
regression analysis. The factors identified in the case
study are presented and used to build a generalised least

squares (GLS) regression model, which is interpreted and
discussed. Strong evidence is found of associations of
speed loss with (1) technological factors and (2) human
factors related to management decisions. Finally, conclu-
sions are drawn, and avenues for future work are
presented.

2 Literature review

2.1 Speed loss and overall equipment effectiveness

The use of speed loss as an operational performance measure
has its roots in TPM, a methodology to maintain and improve
equipment performance in manufacturing organisations de-
veloped by Nakajima [1]. The TPM methodology focuses
on three main areas: maximisation of equipment effectiveness,
operators’ autonomous maintenance of equipment and the use
of small group activities [5, 11]. OEE is defined as a measure
of ‘the ability to run equipment without failure, at the designed
speed and with zero defects’ [12] and is primarily used to
prioritise efficiency improvements in manufacturing [7].

To maximise equipment effectiveness, Nakajima [1] de-
fines six big losses in OEE that should be quantified and
reduced. The six big losses are subdivided into three catego-
ries as follows:

Availability losses (A)

1. Equipment breakdown, causing reduced productivity or
waste in defective products

2. Setup and adjustment losses

Performance losses (P)

3. Idling and minor stops due to interruptions or temporary
malfunction

4. Speed loss from reduced run rates, measured as the dif-
ference between the equipment’s designed speed and op-
erating speed

Quality losses (Q)

5. Defects and rework
6. Start-up losses occurring in an early stage of production

OEE is calculated as shown in Eqs. 1–4 based on the meth-
od proposed by Nakajima [1]. Equation 2 for performance
efficiency is written in an expanded form to reveal the two
sub-calculations: (1) the ratio of production speeds; and (2) the
calculation of small stops’ impacts [11, 13]. The ratio of pro-
duction speeds can be expressed as speed efficiency (Eq. 5),
with its complement being speed loss (Eq. 6).
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AE ¼ Total time−Unplanned downtime
Total time

ð1Þ

PE ¼ Ideal cycle time
Actual cycle time

� Actual cycle time� Output
Operating time

ð2Þ

QE ¼ Output−Quality defects
Output

ð3Þ

OEE ¼ AE � PE � QE ð4Þ

Speed efficiency ¼ Ideal cycle time
Actual cycle time

ð5Þ

Speed loss ¼ 1−
Ideal cycle time
Actual cycle time

ð6Þ

where

Total time Operational time of equipment, excluding
planned stops for holidays, maintenance and
lack of orders

Unplanned
downtime

Time when equipment is scheduled for
production but is unable to produce

Ideal cycle
time

Average theoretical processing rate of
equipment for a given product mix

Actual cycle
time

Weighted average processing rate for
equipment with a given product mix

Output Gross output of material produced by the
equipment

Quality
defects

Material rejected for not passing quality
inspections

Nakajima [1] defines world-class performance in the OEE
subcategories as availability efficiency (AE) of more than
90%, performance efficiency (PE) of more than 95% and
quality efficiency (QE) of more than 99%, with the three mea-
sures multiplied to a world-class OEE of 84%. However, good
OEE performance is argued to be industry-specific as OEE is
influenced by external factors, such as material handling sys-
tems and inventory buffers [9, 13, 14]. For example, in a study
of 23 companies, food and beverage companies are found to
have a higher median OEE (74%) than other types of compa-
nies, while automated discrete production companies have the
lowest OEE (59%) [9].

2.2 Previous speed loss studies

Whereas the magnitude of lost PE is known to be large, the
magnitude of speed loss (and its complement, speed efficien-
cy) is not directly calculated in many papers. Table 1 displays
the PE of the case studies identified in the literature, with
speed efficiency calculated in only two of the nine articles.
PE varies from 54 to 100% across the nine studies while speed

efficiency ranges from 85 to 91% in the two studies, which
explicitly calculate it.

2.3 Factors related to speed loss

Researchers and practitioners cite several reasons for reduced
operating speed on manufacturing lines, including factors re-
lated to process technology, factory management, materials
and quality, amongst other aspects (see Table 2). By design,
the characteristics of process technology influence production
speed.Mechanical and electrical issues, old age and high wear
can cause machines to run below the ideal cycle time while
operating [1, 2]. Unplanned maintenance stops are also known
to affect speed loss as time is needed to bring production back
to normal speed after unplanned stops [6]. While physical
limitations are considered in determining the ideal cycle times
for machines in the engineering stage, machinery may operate
at less than ideal capacity due to further technological con-
straints (e.g. downstream bottlenecks) and environmental lim-
itations placed on factories [19]. Depending on the technolo-
gy, there might also be a natural level of variation in the speeds
of machines which affects speed loss figures but which may
be difficult to avoid [20].

Differences in crews, work standards, performance targets
and the management of operators are also known sources of

Table 1 Performance loss in OEE case studies detailing performance
efficiency

Author Company Performance
efficiency

Speed
efficiency

Ahmad, Hossen
and Ali [15]

Yarn producer, single
process

80–89% 85–91%

Dal, Tugwell and
Greatbanks
[11]

Airbag producer, weaving
department

85% N/A

Hedman,
Subramaniyan
and Almström
[9]

23 companies (7
food/beverage plants, 9
mechanical workshops,
4 discrete automated
plants, 3 polymeric
plants)

100% for
80% of
companies

N/A

Jonsson and
Lesshammar
[7]

Construction vehicle
producer, metal profiles
manufacturer

85–94% N/A

Ljungberg [3] 23 machinery systems 68% 91%

Morales Méndez
and
Rodriguez
[16]

Auto-parts machining line 84% N/A

Ohunakin and
Leramo [17]

Beverage bottling facility 54–65% N/A

Tsarouhas [2] Pizza production line 80–97% N/A

Tsarouhas [18] Italian cheese production
line

87% N/A

N/A not available
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variations in production speed [24] and are directly controlla-
ble by factory management. Beyond production, a lack of
standard operating procedures for maintenance activities can
contribute to technical issues, such as equipment malfunction,
forcing operators to reduce production speed [1]. A further
factor within management’s discretion is the determination
of ideal cycle times and speeds for equipment if no ideal cycle
times are given in the equipment specifications. In industrial
applications of OEE, speed loss is found to be negative in
certain instances, implying that ideal speeds are often set too
low for certain processes [3].

Production scheduling and sequencing, often under the in-
fluence of factory management, are shown to be significant
factors affecting speed variations in production [20, 26].
When producing multiple product variants with different ideal
speeds and sequence-dependent setup times, it is critical that
products are sequenced to avoid large shifts in production
speed and long stops for setup [20].

Speed on production lines may also be reduced to prevent
products from being rejected in quality inspections [1]. Nurani
and Akella [28] identify an inverted U-shaped relationship
between production speed and profit accrual rate: at very high
levels of speed, profits decrease due to higher quality-related
expenses (e.g. scrap costs and opportunity costs of lost sales).
Determining the maximum production speed that does not
reduce product quality, therefore, is of interest whenmanaging
speed loss.

Other factors, such as capacity utilisation and product va-
riety, are also shown to be related to the loss of production
speed. The number of product variants sold by firms is shown
to grow as firms globalise, expand markets and expand capac-
ity [21, 22]. If not properly managed, product variety can
decrease production speeds as low-volume products increase

the number of changeovers and destabilise process settings [1,
21, 22, 26]. Similarly, the utilisation of machines can be relat-
ed to the degree to which they operate at ideal speed because
of the pressure operators may face from management or be-
cause of an increased occurrence of equipment breakdown.
Capacity-constrained machines are commonly pressed to op-
erate closer to the ideal production speed than machines with
excess capacity, as in the case of an OEE study by Ljungberg
[3].

2.4 Methods for quantifying the effects of speed loss
factors

Improvement methodologies in the lean and TPM toolboxes
are used to address speed loss in the literature [1, 8], but the
methodologies are few and have limited explanatory and sta-
tistical power. First, Nakajima [1] proposes a four-step method
to set progressively higher speed targets and reduce speed
loss:

1. Achieve the standard speed for each product.
2. Increase the standard speed for each product.
3. Achieve the designed speed.
4. Surpass the designed speed.

This approach is designed to expose hidden problems, such
as inadequate maintenance, inappropriate setup and tuning
and improper testing in the equipment design phase [1].
However, the method offers little guidance on how to isolate
and quantify the speed loss arising from specific factors.

Second, Benjamin et al. [8] take an explanatory approach
applying the 5 Whys technique to assess speed loss at a metal
barrel manufacturer. Benjamin et al. [8] apply Pareto analysis

Table 2 Publications discussing
factors affecting the loss of
production speed in
manufacturing contexts

Speed loss factors Publications discussing factors

Machine reliability and production stops [2, 6, 17, 21]

Equipment age and wear [1, 8]

Technological and environmental limitations [11, 19, 22]

Natural process variation [20]

Queue capacity for work in process [23]

Operator training and inefficiency [2, 8, 23, 24]

Improper maintenance [1, 6, 8]

Measurement error [11, 19, 25]

Ideal cycle time set too low [1, 3, 7]

Production scheduling [20, 22, 23, 26]

Capacity utilisation [3, 21]

Material availability and quality [8, 11, 19, 27]

Raw material mix [27]

Quality (finished goods) [1, 2, 28]

Product variety [1, 21–23, 26]
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to speed loss issues and perform the 5Whys approach with the
most commonly occurring issues to identify and address the
cause. While the approach does help achieve a reduction in
speed loss equalling 32,000 USD at the case company [8], the
approach gives only rudimentary consideration to speed loss
from different factors, examining each factor in isolation in-
stead of assessing the factors’ collective, incremental impact
on speed loss. Furthermore, the 5 Whys approach is not ideal
for assessing process manufacturing systems, which have
many interacting sources of speed variation and many param-
eters to consider when increasing speed.

3 A framework of speed loss factors

As argued in Section 1, the operations management and TPM
literature lack solutions specifically addressing speed loss [8],
which includes the absence of an overview of speed loss fac-
tors. To address this issue, this paper proposes a framework of
speed loss factors at three abstraction levels, including three
dimensions, ten categories and 20 factors. Specifically, 15
types of speed loss factors were identified in the literature
(Table 2), of which, however, some were multifaceted. To
increase concept clarity, these 15 speed loss types were divid-
ed into 20 distinctive factors, organised under ten categories,
placed under three overall speed loss dimensions: (1) technol-
ogy factors, (2) human factors and (3) product factors. This is
shown in Table 3. In this context, it should be noted that

management and operator factors are placed under a common
dimension (human factors) since the line between such factors
in some contexts is blurry. It should also be noted that the
factors ‘equipment wear’, ‘improper maintenance’ and
‘equipment age’ are only indirect causes in the sense that they
result in unreliable or obsolete machines, which are the direct
causes of speed loss.

4 Methodology

A case study approach was employed to investigate the devel-
oped framework. The case study method is appropriate for
studies with unclear boundaries between the phenomenon
and the context [29]. This research is aimed at identifying
factors related to speed loss in a process manufacturing firm
and quantifying their relationship, so the case study approach
is appropriate. In the following sections, the case company is
introduced, and the analysis approach is detailed.

4.1 Research context

The case company selected for analysis is a building insula-
tion production facility in Europe, hereafter referred to as
InsCo. InsCo is selected as it utilises a high-volume,
continuous-flow process representative of the process industry
[30]. The factory consists of two production lines with similar
layouts and product mixes. Both lines operate 24 h a day, 7

Table 3 Dimensions and
categories of speed loss
contributors

Dimension Category Factors identified in the literature

Technology Technology reliability Machine reliability

Production stops

Equipment wear

Improper maintenance

Technology limitations Technological limitations

Equipment age

Queue capacity for work in process

Environmental limitations Environmental limitations

Human Operator inefficiency Operator training

Operator inefficiency

Measurement error Measurement error

Planning issues Production scheduling

Ideal cycle time set too low

Capacity utilisation

Product Material availability Material availability

Material quality Material quality

Natural process variation

Raw material mix

Product variety Product variety

Product quality Quality (finished goods)

Int J Adv Manuf Technol (2020) 106:2021–2034 2025
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days a week, with a four-crew, rotating work schedule. The
managers and personnel operating both lines are well
acquainted with lean tools and recently implemented OEE to
measure production losses on the two lines. The lines have not
experienced anymajor changes in capacity utilisation, produc-
tion technology or product mix in the past 5 years, making
them favourable for analysis. Both lines are assessed in this
study and are referred to as L1 and L2 throughout the paper.

The insulation production process (see Fig. 1) consists of a
hot end where a combination of raw materials is melted and
spun into fibres. The fibres are combined with recycled fibres
from downstream waste, creating the primary material, which
is compressed into a final form before being cured, cooled, cut
and packed per product specifications. The continuous, circu-
lar nature of InsCo’s production process is characteristic of
process manufacturing [19].

Amongst the measures of speed or throughput on the pro-
duction line, the primary material throughput (i.e. primary
speed) is used to measure speed in this study. Primary speed
is selected for analysis of speed loss as it is a directly control-
lable speed upstream in the process, and live data on primary
speed are immediately relayed to operators through process
control visuals. Downstream speed measures are not
favourable for analysis as they are subject to many additional
sources of variation, including manual data registration.
Primary speed can be adjusted by melting and spinning more
fibres or adding more recycled fibres to the material flow.
Increasing the output of the spinning process must be done
gradually, given the technological limitations and environ-
mental constraints of the process. The recycled material con-
tent can be increased almost instantaneously if recycled fibres
are present in the system.

Each production batch represents a single product variant,
which is a unique combination of mechanical and thermal
properties, dimensions and packaging materials. Changes be-
tween batches of different products can occur during produc-
tion stops and run timewith non-conforming products rejected
from the line as waste. Primary speed thus encompasses the
production of non-conforming material rejected downstream.

In the spring of 2016, InsCo implemented a speed
standardisation programme. Lacking official ideal cycle times

for product variants, factory management set maximum speed
targets for the primary speed for each product based on per-
formance in the previous year. The targets are incorporated
into a visual control tool: a digital speedometer (see Fig. 2),
indicating whether the operators are on target (green), slightly
under target (yellow) or far under target (red). If the target
primary speed is not achieved for a given production batch,
the operators enter an explanation into a free text field in the
manufacturing execution system (MES).

Examining the target primary speed compared to the actual
primary speed reveals that L1 and L2 often exceed the speed
targets set by management (see, e.g. Fig. 3), creating negative
speed loss. The highest demonstrated sustainable primary
speed for each product is used as the ideal speed to avoid
negative speed loss in the quantitative study [19]. To deter-
mine the highest demonstrated, sustainable primary speed, the
researchers assess batches within the technical capabilities of
the processes demonstrated in the period analysed and sustain-
able for a batch of greater duration than 30 min. If no feasible
primary speed is found for a product in the period analysed,
the factory target primary speed is used.

Analyses are performed using 3 months of data at InsCo
from 1 November 2017 to 31 January 2018, a stable period of
operations at the company when the use of the speed tool was
well established in the organisation.

4.2 Data collection

Data on suspected causes of speed loss from the operators’
perspective were extracted at the batch level from the
manufacturing execution system (MES), translated from the
local language into English using Google Translate software
and coded by the researchers [31]. Translated meanings un-
clear to the researchers were verifiedwith the factory manager.
A preliminary set of speed loss causes was presented to the
factory manager, whose feedback was incorporated to consol-
idate the factors. Three 1-h, semi-structured interviews with
the factory manager were held to understand the production
context, scope the analysis and report the results. These dis-
cussions focused on the format of the speed variance tool,

Packing

Raw materials
Molten material
Newly spun fibres
Cured material Waste 

Storage

Fibre
CollectingMelting Spinning

Primary MaterialMaterial flow

Waste 
Dosing

Waste 
Granulation

Pressing Curing Cutting

Fig. 1 Insulation production process

2026 Int J Adv Manuf Technol (2020) 106:2021–2034



www.manaraa.com

structure of the data, use of the tool and factors likely to affect
speed loss at the factory.

Data for the speed loss factors from the thematic analysis
were compiled from various sources at the case company to
inform the quantitative study. Sensor data on the primary
speed and recycled material speed were collected from the
production data warehouse and pre-processed in the statistical
software program R, using a local regression to create smooth
curves and eliminate signal noise while fitting the predomi-
nant trends in the process variables. The data were cleaned of
production stop times (primary speed of 0 ton per hour) to
assess only equipment uptime. Outliers for the primary speed,
classified using 1.5 times the interquartile range of the signal,
were removed from the dataset. Sensor data from every
30 min of production time were analysed to capture the dy-
namic nature of production activities not visible at higher
levels of aggregation [20].

Batch-level data containing the coded operator data, prima-
ry speed targets and downtime information were also extract-
ed and mapped to the sensor data. The data included a total of
1231 production batches for 600 products from L1 and 626
batches of 300 products from L2. Additional data used in the
analysis were the crew schedule and maintenance data from
Excel spreadsheets at the factory.

4.3 Data analysis

First, a rigorous qualitative, thematic analysis of written oper-
ator input is performed to identify possible factors influencing
speed reductions at the case company. This is followed by a
regression analysis of production data to quantify the magni-
tude of the relationship of speed loss with each identified
factor.

The maximum likelihood estimates of regression coef-
ficients for the combined factors were calculated using
GLS regression using the nlme package in R [32, 33].
Regression analysis is proven to be an appropriate method
for analysing changes in throughput and costs in chemical
and glass producers [20, 26]. General linear regression is
specifically applicable to regressing on time-series data
due to serial correlations and heteroskedasticity in error
terms [34].

In the following discussion of the findings, statistically
significant factors are evaluated from a mechanical perspec-
tive to determine if the correlations evaluated in the regression
analysis are causal. Although a significant correlation coeffi-
cient in regression analysis cannot be taken as direct evidence
of a causal relationship between the factors and speed loss
[34], the combination of a significant correlation coefficient
and a mechanical explanation of a relationship can paint a
stronger picture of causality.

Fig. 3 Primary speed for one day
of production on L1 showing
periodic overachievement of
factory speed targets and
underachievement of maximum
sustainable primary speed targets
for 1 day of production (y-axis
labels removed to maintain
confidentiality)

Primary Speed
Tons / Hour

Fig. 2 Speedometer used to monitor primary speed-target status at InsCo
(conceptual)
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5 Findings

5.1 Current speed loss at InsCo

Before addressing the factors affecting speed loss, first, the
efficiency of the two production lines is calculated. The
OEE for L1 and L2 for the period studied are assessed using
the method described by Nakajima [1], and the results are
summarised in Table 4. The data registration practices at the
firm allow recording all production stops, small and large, as
unplanned downtime, moving the effect of small stops from
the PE measure to the AE measure. Consequently, PE in this
study measures speed loss in isolation.

Table 4 shows that QE is the lowest of the OEE sub-
measures at InsCo. The second lowest sub-measure is PE in
the form of lost speed efficiency, equating to 9–10% of lost
capacity at InsCo. AE for both lines is higher than 90% and
reaches the world-class standard within the TPM literature [1].

5.2 Identifying factors related to speed loss

Nine main groups of speed loss factors were identified
through a thematic review of operator input to the MES
through the speed tool at InsCo. These can be distributed
across the three dimensions of the proposed framework

(Table 3). In the following, the relationships to the factors of
the framework are stated in parentheses after the identified
speed loss factors from the case. The main technology factors
include

1) Furnace limits (technology limitations and environmental
limitations)

2) By-product drain (technological limitations)
3) Technical issues (technology reliability)
4) Production stop (technology reliability)

The main human factors include

5) Planning (planning issues)
6) Start-up of the production line (operator inefficiency)

The main product factors include

7) Quality issues (product quality)
8) Raw materials issues (material availability and quality)
9) No recycling (material availability and quality)

Figure 4 shows the frequency distribution of the cited
causes of speed loss on the two lines over the 3-month period.
The analysis is restricted to runs when InsCo’s speed loss
target is not achieved. More than one speed loss cause may
be cited for a single batch. The most frequently cited causes of
speed loss are furnace limitations (e.g. approaching a fur-
nace’s maximum capacity and approaching environmental
limits on emissions) and draining of by-products created dur-
ing melting from the furnace. Also cited are reduced speeds
due to production planning (e.g. short run duration and large
shifts between product speeds), production stops, raw material

Table 4 Overall
equipment effectiveness
for two lines, L1 and L2,
at InsCo, November
2017–January 2018

OEE measure L1 L2

Availability efficiency (%) 96 96

Performance efficiency (%) 90 91

Quality efficiency (%) 86 90

OEE (%) 74 79
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6268
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Fig. 4 Distribution of operator-suspected causes of speed loss
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issues, lack of recycling material, start-up of the line, technical
issues with equipment and quality issues experienced at the
end of the line.

Interview data from factory management and process ex-
perts enabled the identification of additional possible causes
of speed loss, including crew differences, product variety, fac-
tory learning curve, recycled content and natural process var-
iation. These variables and those in Fig. 4 are aggregated, and
the impact on speed loss is assessed in the following section.

5.3 Quantifying the relationships between the factors
and speed loss

A GLS regression model is constructed using the aggregated
set of variables to reveal the potential causal relationships
between the main factors of speed loss at InsCo. The two
production lines are assessed individually as it is hypothesised
that the significance of different factors varies across the two
lines. Equation 7 shows the dependent variable measured as
the percentage speed loss based on the defined target speed for
each product. Speed loss is expressed in percentage form to
normalise the differing primary speed targets for the various
products (Table 5).

SPLOSSt ¼ Targett−Actualtð Þ=Targett � 100 ð7Þ

A parsimonious array of 15 variables is assessed based on
the qualitative speed loss causes cited by the operators and the
feedback from management given in the interviews.

Exploratory, univariate analysis reveals that all 15 variables
are suitable for modelling with a linear relationship to percent-
age speed loss. During interviews, operators and factory man-
agement did not suspect any interaction effects amongst the
process variables. To test their view empirically, nine interac-
tion effects were tested based on the researchers’ understand-
ing of the system variables and how they could affect one
another (e.g. FURN × TECH representing how the furnace
limitations may affect other mechanical breakdowns, QUAL
× PRSTOP representing how the presence of a production
stop may affect product quality, etc.).

The final model tested using GLS regression is shown in
Eq. 8. Crew four is selected randomly as the base crew to
which the other crews are compared in the model, so the crew
four variable is excluded from Eq. 8.

SPLOSSt ¼ β0 þ β1RUNTIMEt þ β2NEXTSPt þ β3PREVSP þ β4FURNt

þ β5TECHt þ β6PRSTOPt þ β7QUALt þ β8BYPRODt þ β9MATERt

þ β10LEARNt þ β11RECYCt þ β12RAWMATt þ β13CREW1t þ β14CREW2t
þ β15CREW3t þ β16 RUNTIME � NEXTSPð Þt þ β17 RUNTIME � PREVSPð Þt
þ β18 TECH � FURNð Þt þ β19 TECH � PRSTOPð Þt þ β20 TECH � QUALð Þt
þ β21 QUAL� FURNð Þt þ β22 QUAL� PRSTOPð Þt þ β23 QUAL� BYPRODð Þt
þ β24 BYPROD� RAWMATð Þt þ εt

ð8Þ

The GLS regression results are shown in Table 6 for L1 and
L2. For both models, the intercept is positive and significant
(not shown because of confidentiality agreement). The vari-
ables with statistically significant correlations with speed loss
include learning curve, select crew variables, batch run time,
percentage change in target speed between consecutive
batches, limitations of the melting furnace and draining of

Table 5 Independent variable
definitions Variables Description

RUNTIME Hours of uptime for the current batch, mean centred to 0

PREVSP Percentage change in the target speed of the current batch and the target speed of the previous
batch, mean centred to 0

NEXTSP Percentage change in the target speed of the current batch and the target speed of the following
batch, mean centred to 0

FURN 1 if the current batch has a furnace limitation cited by the operators; 0 otherwise

TECH 1 if the current batch has a technical issue cited by the operators; 0 otherwise

PRSTOP 1 if the current batch has a production stop per the MES data; 0 otherwise

QUAL 1 if the current batch has a quality issue cited by the operators; 0 otherwise

RECYC Recycling fibres in tons per hour from smoothened sensor data, mean centred to 0 and scaled using
standard deviation.

RAWMAT Tons of raw material per hour added to the melting process from smoothened sensor data, mean
centred to 0 and scaled using standard deviations

BYPROD 1 if a by-product is drained from the furnace during run time; 0 otherwise

MATER 1 if the current batch has a material issue cited by the operators; 0 otherwise

LEARN A continuous variable measuring the number of days since 1 November 2017, the beginning of the
analysis period

CREW1 1 if the current batch is produced by the crew 1; 0 otherwise

CREW2 1 if the current batch is produced by the crew 2; 0 otherwise

CREW3 1 if the current batch is produced by the crew 3; 0 otherwise
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by-products from the furnace. Quality issues with finished
goods are significant only in the L1 model, while technical
issues are significant in the L2 model.

The researchers expected higher RUNTIME to be associat-
ed with decreased speed loss. However, the results in Table 6
show that this is true only for L2. For L1, on the other hand,
longer run times are related to increased speed loss. One po-
tential underlying cause is that the average run times on L1 are
half of L2. Thus, it could appear that higher run time is asso-
ciated with decreased speed loss if the run time is over a
certain level (e.g. runs over two hours in duration are related
with decreased speed loss). In this context, it should be noted
that for both models, the run time coefficient is not large and

explains only 1–2% of the change in speed loss based on
typical run times at InsCo.

As seen in Table 6, both variables measuring the percent-
age change in speed targets for subsequent batches are signif-
icant (i.e. NEXTSP and PREVSP). During operation, opera-
tors are known to anticipate higher speed later in the schedule
and pre-emptively increase speed to prepare for the coming
fast product. Evidence for this behaviour can be seen in the
negative coefficient forNEXTSP, which reveals that if the next
product to be produced on L1 or L2 has a higher primary
speed target than the current product being processed, speed
loss for the current product decreases. When assessing the
effect of the previous product, the positive coefficient for

Table 6 Maximum likelihood estimates for the relationships between the process variables and the percentage speed loss on the two lines, L1 and L2,
using GLS regression

L1 L2

Factor Estimate Std. error T value p value Estimate Std. error T value p value

(Intercept) a – 0.206 38.181 < 0.001*** – 0.248 30.150 < 0.001***

Main effects

RUNTIME 0.044 0.019 2.307 0.021* − 0.267 0.033 − 8.142 < 0.001***

NEXTSP − 0.177 0.015 − 11.696 < 0.001*** − 0.251 0.020 − 12.268 < 0.001***

PREVSP 0.159 0.017 9.595 < 0.001*** 0.203 0.022 9.082 < 0.001***

FURN 3.269 0.229 14.289 < 0.001*** 1.898 0.219 8.663 < 0.001***

TECH 0.127 0.254 0.501 0.616 0.784 0.408 1.922 0.055.

PRSTOP − 0.716 0.463 − 1.544 0.123 − 0.378 0.234 − 1.617 0.106

QUAL 0.630 0.282 2.234 0.026* 1.652 0.615 2.686 0.007**

RECYC − 2.400 0.089 − 27.023 < 0.001*** − 1.704 0.104 − 16.341 < 0.001***

RAWMAT − 0.704 0.083 − 8.443 < 0.001*** − 1.333 0.132 − 10.124 < 0.001***

BYPROD 3.643 0.462 7.890 < 0.001*** 1.447 0.225 6.421 < 0.001***

MATER 0.271 0.431 0.629 0.529 − 0.182 0.539 − 0.338 0.735

LEARN − 0.028 0.003 − 9.158 < 0.001*** − 0.020 0.003 − 6.089 < 0.001***

CREW1 0.471 0.235 2.001 0.046* 0.339 0.259 1.305 0.192

CREW2 1.006 0.235 4.278 < 0.001*** 0.730 0.265 2.756 0.006**

CREW3 1.578 0.239 6.588 < 0.001*** 0.532 0.255 2.084 0.037*

Interaction effects

RUNTIME × NEXTSP 0.005 0.005 1.055 0.292 − 0.011 0.005 − 2.359 0.018*

RUNTIME × PREVSP 0.002 0.003 0.487 0.626 0.029 0.004 8.075 < 0.001***

TECH × FURN − 3.089 0.624 − 4.951 < 0.001*** − 0.839 0.482 − 1.741 0.082.

TECH × PRSTOP 3.001 1.192 2.518 0.012* 0.195 0.497 0.394 0.694

TECH × QUAL 1.918 0.704 2.724 0.007** 0.553 1.016 0.544 0.587

QUAL × FURN − 2.830 0.666 − 4.251 < 0.001*** 2.460 0.640 3.843 < 0.001***

QUAL × PRSTOP 1.122 2.242 0.501 0.617 − 0.598 0.624 − 0.959 0.338

QUAL × BYPROD − 0.032 1.206 − 0.027 0.979 − 3.544 0.638 − 5.551 < 0.001***

BYPROD × RAWMAT 2.009 0.595 3.374 0.001*** 0.205 0.182 1.126 0.260

Pseudo R squared 0.675
Residual standard error 4.324, degrees of freedom 2965

Pseudo R squared 0.525
Residual standard error 4.900, degrees of freedom 3020

Significance codes: (.) p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001
a Intercept estimates excluded for confidentiality
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PREVSP shows that if the previous product has a lower pri-
mary speed target than the current product being processed,
speed loss for the current product increases (i.e. the line runs
slower). In other words, it is preferable to schedule a product
with high-speed loss either after a faster product or before a
faster product to avoid lost speed.

The variables RUNTIME, NEXTSP and PREVSP are large-
ly determined by the production planning department.
Although planners optimise the batch size and production
sequence using experience-based heuristics, the production
plan is still subject to last-minute schedule changes, which
can cause large changes in speed.

The quality of the finished product at the end of the line
(QUAL) is also a statistically significant factor related to in-
creased speed loss on both lines as seen in Table 6. Quality
issues are cited by the operators as a cause for decreased speed
performance in 14% of all run time on L1 and 11% of all run
time on L2. In the case of poor product quality, operators
controlling primary speed receive feedback from the testing
and inspection department on how the products’ physical and
aesthetics specifications are not met. In some cases, corrective
action is taken to reduce line speed. The results in Table 6
show that the occurrence of a quality issue is estimated to
increase speed loss by 0.6% for L1 and 1.7% for L2.

Technical issues on the line (e.g. machine breakdown and
reduced capacity) are moderately related to a 1% increase in
speed loss only in the L2 model. The reason for the lack of
significance of TECH on L1 is interesting as there are no
noticeable differences in run time affected by technical issues
on L1 and L2. Further context was provided from the factory
manager who explained in an interview that L2 suffered from
higher severity mechanical failures in the period studied than
L1, being a possible explanation for the significance of TECH
on L2 and not L1.

The variables with the most negative impact on speed loss
(positive coefficients) are by-product drain (BYPROD) and
furnace limitations (FURN). Draining by-product from the
furnace is an obligatory task which operators perform period-
ically to fulfil product specifications and factory safety proce-
dures. Table 6 shows that when the by-product is drained from
the furnaces, the speed is reduced by 3.6% on L1 and 1.5% on
L2. Since by-product is drained from the furnace during ap-
proximately 4% of all run time on both L1 and L2 in the
period analysed, this factor accounts for only a minor fraction
of the total speed loss for the two lines. When the furnace
limitations are reached, the lines experience a roughly 2–3%
speed loss based on the model coefficients for FURN. This
loss is sizeable considering that operators cite furnace limits
for 25% and 47% of the run time on L1 and L2, respectively.
Multiplying the coefficients by the frequency of occurrence of
FURN in the data, the variable FURN alone is related to an
average 0.8% speed loss for the entire three-month period
analysed.

Raw materials (RAWMAT) and recycling (RECYC) have
negative, statistically significant coefficients in both models
in Table 6, indicating that additional flow of material from
upstream allows operators to achieve speed targets better. A
lack of recycling material has dramatic effects on the speed
loss on the production lines and is cited as a cause of speed
loss in 5% of batches on L1.

The variables for crews 1–3 indicate statistically significant
differences from the performance of the control crew (crew 4)
on both lines, except for crew 1 on L2 which was not signif-
icantly different from crew 4. The positive coefficients for all
crew variables in both models suggest that crew 4 performs
with the lowest speed loss on both lines.

An additional variable with a negative, significant regres-
sion coefficient in both models is the learning curve variable.
The results show that for each additional day of experience
operators on L1 and L2 have, the percentage speed loss on the
line decreases by nearly one-fortieth of a percentage point or
one percentage point in 40 days. The factory manager stated
that his team focused on speed loss activities on both lines in
the period examined, corroborating the identified trend in im-
proved speed loss.

Variables with no significant relationship with percentage
speed loss are production stops and raw material issues (i.e.,
PRSTOP and MATER). These variables were expected to re-
late to increased speed loss as they interrupt the process flow,
but this is not supported by the regression results.

The interaction effects tested reveal additional behaviour of
the production system that is largely unobservable to the
crews operating the machines. On L1, TECH × PRSTOP
and TECH × QUAL both have positive significant coeffi-
cients. This indicates that when technical issues with ma-
chines occur at the same time as either a production stop or
quality issue, speed loss is increased even more then when a
technical issue is experienced in isolation. Variables with neg-
ative and significant coefficients on L1 include TECH ×
FURN and QUAL × FURN. Based on these results, it appears
that quality and technical issues limit the strong increase in
speed loss caused by furnace limitations. The final significant
interaction effect on L1 is that of BYPROD × RAWMAT, with
the negative coefficient accurately modelling the system dy-
namics in that raw material flow is reduced directly when by-
product is drained from the furnace. L1 shows no significant
interaction effects amongst the planning and scheduling
variables.

A different set of significant interaction effects are at play
on L2 when compared to L1. First, Table 6 shows significant
interaction amongst the planning variables on L2, with the
coefficient for RUNTIME × NEXTSP being negative and the
coefficient forRUNTIME×PREVSP being positive. Since the
signs for these interaction coefficients correspond with the
coefficient signs of the NEXTSP and PREVSP main effect, it
can be concluded that longer run times amplify the speed loss
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effects of changes in speed for consecutive production runs.
L2 also shows a positive and significant coefficient for QUAL
× FURN, indicating that quality issues and furnace limitations
occurring simultaneously result in higher speed loss. This is
opposite to the relationship identified on L1. The reason for
the change in coefficient direction on L2 compared to L1 is
unknown to the researchers, but could be due to differences in
operation or product mix. Lastly, the same interaction from L1
of by-product drain and rawmaterial flow on speed loss is also
seen on L2.

To sum up, the main findings from the GLS regression
include

1) Variables with statistically significant correlations with
speed loss include learning curve, select crew variables,
batch run time, percentage change in target speed between
consecutive batches, limitations of the melting furnace,
draining of by-products from the furnace and quality is-
sues, while technical issues were only slightly significant
on one line.

2) Higher run timewas only associatedwith decreased speed
loss on the line which was scheduled with longer produc-
tion batches.

3) Scheduling a product with a high-speed loss after a faster
product or before a faster product reduces speed loss.

4) The variable with the largest and most negative impact on
speed loss was furnace limitations, accounting for rough-
ly 1% available production capacity in the 3-month
period.

5) A lack of recycled input material has dramatic effects on
the speed loss on the production line and is cited as a
cause of speed loss in 5% of batches on one production
line.

6) The variables for production stops and rawmaterial issues
(i.e. material availability and quality) had no significant
effect on speed loss.

7) There are complex interaction effects at work in the sys-
tem which differ across the two lines examined.

6 Discussion and conclusions

Based on TPM literature, the paper developed a framework of
ten categories including 20 factors contributing to speed loss
in manufacturing lines, grouped under three overall speed loss
dimensions: (1) technology factors, (2) human factors and (3)
product factors. With a basis in the constructed framework, a
case study of speed loss on two process manufacturing lines
was carried out. These studies revealed nine significant factors
related to speed loss and multiple interaction effects across
these factors. The nine factors identified are mainly related
to the process design and technology installed at the factory,

factors which operators have little influence over in daily op-
erations. Instead, engineering resources are needed to better
understand and mitigate furnace limitations, by-product
draining and raw material and recycling dosing, which are
related to speed loss.

The results of the analysis highlight specific, previously
unseen sources of variation in production speed at InsCo,
helping factory management to identify logical means to ad-
dress these sources. Addressing furnace limitations is a key
step to enable both production lines to run closer to their ideal
speeds, and the study results can be used to inform the busi-
ness case for the redesign of the furnace or capital investment
for new technology.

Also found to be significant in this study are human factors,
such as production scheduling, learning curve, unambitious
target setting, crew differences and machine breakdowns from
improper maintenance [2, 3, 22, 23]. This finding indicates
that sizeable improvements in speed loss can be made by
applying lean and TPM approaches, such as the speed loss
method applied byNakajima [1] and the 5Whys analysis used
by Benjamin et al. [8]. Actions to further optimise production
planning and to implement best practice across crews should
also be taken.

Production stops and material issues are not directly related
to the percentage speed loss for either production line studied.
This finding suggests that while these operational interrup-
tions may catch operators’ attention in the data as they affect
speed loss, they are relatively minor compared to the natural
fluctuations inherent in the process technology and human
resources. Here, the benefit of applying more advanced statis-
tical techniques to the analysis of speed loss in process
manufacturing settings can be seen.

No evidence is found in the analysis to support the impact
of measurement error and product variety. However, the im-
pact of product variety on speed loss is seen indirectly through
run time and order sequencing, as discussed in the literature
[26]. Regarding measurement errors, these may have occurred
in the data sample to a smaller extent but were not detected by
the researchers.

This study is potentially limited by its determination of
speed targets, which might have been skewed by outliers.
The researchers took action to clean out obvious outliers to
avoid this problem. Additionally, it is possible that critical
variables are omitted from the regression model unbeknownst
to the researchers. Another study limitation is possible mea-
surement errors in the sensors, which may have contributed to
variability in the dependent and independent variables. Lastly,
while the coefficient for the learning curve variable implies
that operators reduce their speed loss with time, the linear
relationship is limited to interpolation within the analysed data
set and should not be extrapolated. Extrapolation would as-
sume that the speed loss can be minimised indefinitely as
operators gain more experience, which is not feasible.
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This study contributes with a framework of factors leading
to speed loss and a parallel case study quantifying the impacts
of the identified factors on speed loss on two insulation pro-
duction lines. The results validate most speed loss factors de-
scribed in the literature from a process manufacturing perspec-
tive and highlight the importance of technology and
management-related factors in reducing speed loss. Speed loss
was found to cause a 9–10% loss of production capacity on
the two lines studied, falling within the previously described
range of 9–15% in other TPM studies [3, 15]. Similar results
are expected to be found in other capital-intensive,
continuous-flow manufacturers (e.g. producers of foam mat-
tresses, frozen baked goods and steel beams) due to the high
rigidity and integration of the equipment. Due to the broad
nature of the speed loss factors identified, the framework in
Table 3 seems to be applicable to other manufacturing systems
in its current state, but further research is needed to confirm
this.

Finally, the paper demonstrated that the GLS regression
approach utilised in this study is useful for practitioners to
(1) identify factors related to speed loss; (2) set appropriate
OEE and speed loss targets for unique production contexts
and (3) prepare business cases for capital investment to over-
come technology-related speed loss factors. This study adds to
the work demonstrating regression analysis as an effective
technique for discerning the effects of variables in process
industry settings [20, 26]. Additionally, this study is the first
to specifically investigate the causes of speed loss to the best
of the researchers’ knowledge. Due to the use of regression for
the analysis of other process industry research problems, it is
likely that the analysis approach used in this paper could be
readily applied in another process industry setting. It is unclear
whether the same approach could be effectively used in other
production systems. Future research is needed to further ex-
plore the usefulness of the proposed framework and possibly
extend it.
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